Book Review: Supercritical Fluids: Molecular Interactions, Physical Properties, and New Applications (Springer Series in Material Processing). Edited by Yasuhiko Arai, Takeshi Sako, and Yoshihiro Takebayashí

ChemPhysChem ◽  
2002 ◽  
Vol 3 (11) ◽  
pp. 981-981
Author(s):  
Ireneo Kikic
Macromol ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 155-172
Author(s):  
Aristeidis Papagiannopoulos

Polyelectrolytes have been at the center of interdisciplinary research for many decades. In the field of polymer science and soft matter, they have provided the dimensions of electrostatic interactions, which opens a vast variety of opportunities for new physical properties and applications. In biological matter, polyelectrolytes are present in many forms, from extracellular polysaccharides to complex DNA molecules and proteins. This review discusses the recent research on polyelectrolytes covering the fundamental level of their conformations and nanostructures, their molecular interactions with materials that have close relevance to bioapplications and their applications in the biomedical field. This approach is motivated by the fact that the polyelectrolyte research is constantly active in all the aforementioned levels and continually affects many critical scientific areas.


Author(s):  
Jane S. Murray ◽  
Peter Politzer

The quest for improved methods for elucidating and predicting the reactive behavior of molecules and other chemical species is a continuing theme of theoretical chemistry. This has led to the introduction of a variety of indices of reactivity; some are rather arbitrary, while others are more or less directly related to real physical properties. They have been designed and are used to provide some quantitative measure of the chemical activities of various sites and/or regions of the molecule. In this chapter our focus is on one of these indices, the electrostatic potential V(r) that is created in the space around a molecule by its nuclei and electrons. V(r) can be computed rigorously, given the electronic density function ρ(r), by Eq. (3.1).


Sign in / Sign up

Export Citation Format

Share Document